首页  实验室概况  研究成果  人才队伍  研究生培养  合作交流  省重点实验室  下载中心 
新闻动态

傅声雷研究团队揭示林冠氮沉降提 2024-06-17
郭丽君一行赴大别山国家站调研并 2023-07-18
2023年中国地理学会农业地理与乡 2023-07-18
河南大学与信阳市人民政府举行信 2023-07-08
河南大学喜获10项2022年度河南省 2023-03-27
河南大学与信阳市政府共建 “信 2023-03-27

下载中心
您的位置: 首页>>下载中心>>正文

SOIL SCIENCE SOCIETY OF AMERICA JOURNAL(2003)--Rhizosphere Effects on Decomposition Controls of Plant Species, Phenology, and Fertilization
2020-03-12 17:26  

Plant species and soil fertility presumably control rhizosphere effects on soil organic matter (SOM) decomposition, but qualitative and quantitative descriptions of such controls are still sparse. In this study, rhizosphere effects of soybean [Glycine max (L.) Merr.] and spring wheat (Triticum aestivum L.) on SOM decomposition were investigated at four phenological stages under three levels of fertilization in a greenhouse experiment using natural C-13 tracers. The magnitude of the rhizosphere effect ranged from 0% to as high as 383% above the decomposition rate in the no-plant control, indicating that the rhizosphere priming can substantially intensify decomposition. The rhizosphere priming effect was responsible for a major portion of the total soil C efflux. Cumulative soil C loss caused by rhizosphere effects during the whole growing season equated to the amount of root biomass C for the soybean treatment, and 71% of root biomass C for the wheat treatment. Different plant species produced significantly different rhizosphere priming effects. The overall rhizosphere priming effect of soybean plants was significantly higher than for wheat plants. Plant phenology significantly influenced the rhizosphere priming effect. Little rhizosphere effect occurred in both wheat and soybean treatments initially. The priming effect of the wheat rhizosphere reached 287% above the no-plant control at the flowering stage and declined significantly afterward. The priming effect of the soybean rhizosphere peaked at 383% above the no-plant control during the late vegetative stage and remained at high levels onward. Contrary to many published reports, NPK fertilization did not significantly modify the rhizosphere priming effect.

附件【Rhizosphere Effects on Decomposition Controls of Plant Species, Phenology, and Fertilization.pdf已下载
关闭窗口

河南大学生态地理学实验室